
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2007) 1483–1499

www.elsevier.com/locate/jcp
Spectral splitting method for nonlinear Schrödinger
equations with singular potential

Andrea Sacchetti
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Abstract

We consider the time-dependent one-dimensional nonlinear Schrödinger equation with pointwise singular potential. By
means of spectral splitting methods we prove that the evolution operator is approximated by the Lie evolution operator,
where the kernel of the Lie evolution operator is explicitly written. This result yields a numerical procedure which is much
less computationally expensive than multi-grid methods previously used. Furthermore, we apply the Lie approximation in
order to make some numerical experiments concerning the splitting of a soliton, interaction among solitons and blow-up
phenomenon.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the one-dimensional time-dependent nonlinear Schrödinger equation (hereafter
NLS) with a spatially localized point defect represented by means of a Dirac’s delta. Such a basic model
has recently attracted an increasing interest, from both theoretical [2,10,12,20] and numerical [11,14–16] points
of view; in fact, scattering of solitons by point defects is a natural model extensively studied in physics (see,
e.g., [9]).

Previous numerical experiments performed by Goodman et al. [14] are mainly based on finite difference
approximation schemes where the Dirac’s delta function is approximated either as a single point discontinuity,
or by a smoother function with small support; a slightly different procedure with a nonuniform two-dimen-
sional grid has been adopted by Holmer et al. [15,16] where they choose a finer grid centered at the origin
(where the Dirac’s delta is supported) in order to better study the effects of the interaction with the point
defect. In these models a linear system has to be solved at each step.

In the first part of this paper we develop a different numerical procedure based on spectral splitting tech-
niques for Schrödinger equations (see, e.g., the contributions given by [6,17,19]), that is we approximate the
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evolution operator of the NLS with point defect by means of the Lie evolution operator. These techniques,
applied by Besse et al. [7] for NLS without potential, are adapted here to the case of point defect. In particular,
in Theorem 1 we prove that the solution wtðxÞ ¼ wðx; tÞ (hereafter, index t denotes the dependence on time of
the solution) of the NLS equation with point defect
i owt
ot ¼ �

o2wt
ox2 þ cdwt þ �jwtj

2lwt;

wtðxÞjt¼0 ¼ w0ðxÞ 2 L2ðRÞ

(
ð1Þ
is approximated by means of the Lie evolution operator in the following sense: for any fixed T P 0, for any
N > 0 large enough and for any b < 1

4
there exists a positive constant C which depends on b and on

maxt2½0;T �kwtkL1 , but independent on h ¼ T=N , such that
kwT � ½X hY h�Nw0kL2 6 Chb; h ¼ T=N ;
where Y h simply acts as Y hw ¼ e�i�hjwj2l
w and where X h is the evolution operator of the linear Hamiltonian with

Dirac’s delta. Here c 2 R is the strength of the Dirac’s delta function, � 2 R is the strength of the nonlinear
term and l > 0. For c > 0 (resp. c < 0) then we speak of repulsive (resp. attractive) pointwise interaction;
for � > 0 (resp. � < 0) we speak of de-focusing (resp. self-focusing) nonlinearity.

Since the evolution operator X h of the exact linear problem is given by means of an integral operator which
kernel is explicitly written (Lemma 1) then such a method simply consists of an iterative procedure where at
each step the computation just consists of a numerical integration. Furthermore, we do not need to make any
approximation of the Dirac’s delta function. Therefore, the numerical scheme we have developed here seems
to be much less computationally expensive and more robust than the previous ones.

In the second part of this paper we perform some numerical experiments.
The first experiment concerns the motion of solitons and the effect of the pointwise perturbation on such a

motion. This kind of experiment concerning the motion of a single soliton is not new, see, e.g., [14–16], and the
main effect is the splitting of the soliton when its center of mass, defined as
hxit ¼
Z

R

xjwtðxÞj
2 dx;
hits the support of the pointwise perturbation. One part of the wave function will move according to the initial
velocity while the other part will move in the opposite direction (see Fig. 1), and the motion of the center of
mass will slow down (see Fig. 3) for both attractive and repulsive pointwise perturbation. We then consider a
new experiment concerning the collision of two solitons, and we have different pictures depending on the sign
of the strength of the Dirac’s delta. In fact, in the case of repulsive pointwise interaction (i.e. c > 0) then the
motion of the center of mass will be accelerated when it passes through the support of the pointwise interac-
tion; in contrast, in the case of attractive pointwise interaction (i.e. c < 0) then the motion of the center of
mass will be decelerated when it passes through the support of the pointwise interaction and, as in the case
considered in Fig. 4, the motion of the center of mass inverts its direction.

The second experiment concerns the appearance of blow-up phenomena for increasing self-focusing non-
linearity and when the nonlinear power l is hyper-critical (that is l > 2). This phenomenon has been previ-
ously studied by [1] for NLS equation with a pointwise interaction and a general criterion has been
formulated for the appearance of blow-up. Here we consider a state that initially coincides with the stationary
state of the linear Schrödinger equation (with attractive Dirac’s delta): when the strength j�j of the nonlinear
term is smaller than a given value �1 then there is no blow-up, in contrast when the strength j�j of the nonlinear
term is larger than a given value �2 then there is blow-up in finite time. In an explicit example we numerically
compute �1 and �2 and we perform some experiments for different values of �. Our experiments fully agree with
the theoretical analysis and also the transition from no-blow-up to blow-up condition appears (Fig. 5).
2. Spectral-splitting method

We consider the time-dependent nonlinear Schrödinger equation (hereafter NLS) with real-valued
potential V
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i owt
ot ¼ �

o2wt
ox2 þ V wt þ �jwtj

2lwt;

wtðxÞjt¼0 ¼ w0ðxÞ 2 L2ðRÞ;

(
ð2Þ
where l > 0 and � 2 R are fixed parameters. Under some assumptions onV (see, e.g., [8]) then Eq. (2) admits
an unique local solution
wt ¼ Stw0;
where
St : L2ðRÞ ! L2ðRÞ

is a unitary evolution operator.

2.1. Lie approximation

We consider, separately, the linear Cauchy problem
i ovt
ot ¼ �

o2vt
ox2 þ Vvt;

vtðxÞjt¼0 ¼ v0ðxÞ 2 L2ðRÞ

(
ð3Þ
and the nonlinear Cauchy problem
i owt
ot ¼ �jwtj2lwt;

wtðxÞjt¼0 ¼ w0ðxÞ 2 L2ðRÞ

(
ð4Þ
and we denote by X t and Y t, respectively, the evolution operator associated with (3) and (4):
vt ¼ X tv0 and wt ¼ Y tw0:
The evolution operator X t will depend on the potential V; in contrast, the evolution operator Y t is simply given
by:
wt ¼ Y tw0 ¼ w0 exp½�i�tjw0j2l�: ð5Þ

We recall that (2) and (4) have the mild representation (Duhamel formula)
wt ¼ Stw0 ¼ X tw0 þ i�

Z t

0

X t�sjwsj
2lws ds ð6Þ
and
wt ¼ Y tw0 ¼ w0 þ i�

Z t

0

jwsj2lws ds: ð7Þ
Let us introduce the Lie evolution operator
Zt :¼ Zt
L ¼ X tY t: ð8Þ
In the case of the free one-dimensional problem it has been proved [7] that such an evolution operator rep-
resents a good approximation of the evolution operator St in the following sense:
St � ½Zt=N �N ð9Þ

for N large enough and t fixed.

Here, we consider the Lie approximation 8 for the one-dimensional NLS (1) with singular potential V given
by a pointwise Dirac’s d interaction, where c is a real parameter.

It is well known [4] that the linear operator
H c ¼ �
o2

ox2
þ cd



1486 A. Sacchetti / Journal of Computational Physics 227 (2007) 1483–1499
is self-adjoint on the domain H 2ðR n f0gÞ with boundary conditions
wð0þ 0Þ ¼ wð0� 0Þ ð10Þ

and
w0ðxþ 0Þ � w0ðx� 0Þ ¼ cwð0þ 0Þ: ð11Þ

Namely
DðH cÞ ¼ fw 2 H 2ðR n f0gÞ : w satisfies ð10Þ and ð11Þg:

Notice that, due to (10), the function w 2 DðH cÞ is continuous at x ¼ 0 and therefore DðH cÞ is a subspace of

H 1ðRÞ. Thus, in the following we denote by wð0Þ the limit (10).
We recall also that (Theorem 1 in [2]) if the initial data w0 belongs to H 1ðRÞ then Eq. (1) admits a unique

local solution
wt ¼ Stw0 2 H 1 for any t 2 ð�T �; TþÞ ð12Þ

for some T� ¼ T�ðw0Þ > 0. Furthermore, the following conservation laws hold:

– Conservation of the norm: St is a unitary evolution operator:
kwtkL2 ¼ kStw0kL2 ¼ kw0kL2 :
– Conservation of the energy: let us introduce the following functional, named energy:
E½w� ¼ ow
ox

����
����

2

L2

þ cjwð0Þj2 þ �

lþ 1
kwk2ðlþ1Þ

L2ðlþ1ÞðRÞ: ð13Þ
Then
E½wt� ¼ E½Stw0� ¼ E½w0�:

We state now our main theorem.

Theorem 1. Let w0 2 H1 and let Zt be the Lie evolution operator
Zt ¼ X tY t;
where X t ¼ e�iH ct is the evolution operator of the linear problem with singular potential and where Y t is the evo-

lution operator (5). Let St be the evolution operator associated with the NLS (1) for t 2 ½0; T � where 0 < T < T þ
is fixed. Let N 2 N and 0 < h� 1 such that T ¼ Nh, where h is small enough in order to have hm2l

6 1 where
m :¼ mT ¼ max max
t2½0;T �

kwtkL1 ; max
t2½0;T�h�

kZhwtkL1

� �
; ð14Þ

m1 :¼ max
t2½0;T �

kwtkH1 : ð15Þ
Then, for any b < 1
4

kðZhÞN ðw0Þ � SNhðw0ÞkL2 6 ½e2j�jlm2l�1T � 1� � ej�jCm2lhj�jCm4l½
ffiffiffi
h
p

m1 þ jcjhb� ð16Þ

some positive constant C > 0 independent of w0,h and T.

Remark 1. Estimate (16) holds in the limit of small h, T ¼ Nh fixed and with m and m1 bounded for any time
t 6 T . When we apply this result in a proximity of the blow-up (that is T close to T þ) then m becomes larger
and larger and, in such a case, it seems better to make use of a numerical adaptive scheme in order control the
remainder term (16).

Remark 2. In the case of � ¼ 0, that is we have only the linear problem, then (16) agrees with the trivial result
Z ¼ S. When c ¼ 0, that is we have the free potential, then (16) agrees with the results given by [7].
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Remark 3. Here, for the sake of definiteness, we consider the Lie evolution operator of the form Zt
L ¼ X tY t;

however, it is possible to treat in a similar way the cases where
Zt
L ¼ Y tX t
and where Zt is one of the Strang evolution operators
Zt
S ¼ X

12
t Y tX

12
t and Zt

S ¼ Y
12
t X tY

12
t :
2.2. Properties of the linear problem

Let us recall some basic properties of the spectrum of H c. For details see [3,4,18].
The essential spectrum of H c is purely absolutely continuous and coincides with the positive real axis:
ressðH cÞ ¼ racðH cÞ ¼ ½0;þ1Þ:

Moreover,

– If c P 0 then the discrete spectrum of H c is empty.
– If c < 0 then the discrete spectrum of H c is given by just one simple eigenvalue
k ¼ � 1

4
c2
with associated normalized eigenvector
/cðxÞ ¼
ffiffiffiffiffi
jcj
2

r
e�jcj�jxj=2: ð17Þ
Besides, we shall make use of the explicit expression of the time evolution generated by H c, that is an inte-
gral operator
½X tv�ðxÞ ¼
Z

R

U t
cðx; yÞvðyÞdy ð18Þ
whose kernel reads [3,18]
Ut
cðx; yÞ ¼ U t

0ðx� yÞ þ cRt
cðx; yÞ;
where
Rt
cðx; yÞ ¼

� 1
2

Rþ1
0

due�
1
2cuUt

0ðuþ jxj þ jyjÞ; if c > 0;

0; ifc ¼ 0;

1
c eic

2

4 t/cðxÞ/cðyÞ þ 1
2

Rþ1
0

due
1
2cuUt

0ðu� jxj � jyjÞ; if c < 0

8>><
>>: ð19Þ
and where
Ut
0ðfÞ ¼

1ffiffiffiffiffiffiffiffi
4pit
p exp � jfj

2

4it

 !
is the integral kernel associated to the free Laplacian.
Furthermore, we have the following result.

Lemma 1. Let t > 0, then the kernel Rt
c can be written as
Rt
cðx; yÞ ¼ �

1

4
e

i
4c

2tþ1
2ðjxjþjyjÞcerfc

tc� iðjxj þ jyjÞ
2
ffiffiffiffiffiffiffi
�it
p

� �
ð20Þ
for any c 2 R� f0g. Furthermore, for any fixed 0 < b < 1
4

and any tH > 0 small enough there exists

C ¼ Cb;tH > 0 such that for all w 2 H 1 then
kX tw� wkL2 6 C
ffiffi
t
p
kwkH1 þ jcjtbkwkL2

� �
; 8t 2 ½0; tH�: ð21Þ
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Remark 4. It is immediate to note that
R�jtjc ðx; yÞ ¼ Rjtjc ðx; yÞ
and
U�jtjc ðx; yÞ ¼ U jtjc ðx; yÞ:
Furthermore, for t < 0 it follows that:
Rt
cðx; yÞ ¼ �

1

4
e

i
4c

2tþ1
2ðjxjþjyjÞc 2� erfc

tc� iðjxj þ jyjÞ
2
ffiffiffiffiffiffiffi
�it
p

� �� 	
:

Proof. At first, we consider the case c > 0 where (20) will follow by direct computation. Indeed, for c > 0 we
have that:
Rt
cðx; yÞ ¼ �

1

2
ffiffiffiffiffiffiffiffi
4pit
p

Z þ1

0

exp � 1

2
cu� ðuþ jxj þ jyjÞ

2

4it

" #
du

¼ � 1

2
ffiffiffi
p
p e

1
4itc2þ1

2cðjxjþjyjÞ
Z þ1

0

exp � uffiffiffiffiffiffi
4it
p þ itcþ jxj þ jyjffiffiffiffiffiffi

4it
p


 �2
" #

duffiffiffiffiffiffi
4it
p

¼ � 1

2
ffiffiffi
p
p e

1
4itc2þ1

2cðjxjþjyjÞ
Z e�ip=41

i½tc�iðjxjþjyjÞ�=
ffiffiffiffi
4it
p e�z2

dz ¼ � 1

4
e

1
4itc2þ1

2cðjxjþjyjÞerfc
i½tc� iðjxj þ jyjÞ�ffiffiffiffiffiffi

4it
p


 �
proving (20) for t > 0 and c > 0. The case c < 0 similarly follows.
Then, (21) will follow by means of a stationary phase argument and standard argument applied to the free

evolution operator. To this end, let us write:
X t ¼ X t
0 þ cX t

c;
where X t
0 is the free evolution operator with kernel U t

0 and X t
c is the integral operator with kernel Rt

c. Hence,
kX tw� wkL2 6 kX t
0w� wkL2 þ jcj � kX t

cwkL2 ;
where
ðX t
0wÞðxÞ ¼ 1ffiffiffiffiffiffiffiffi

4pit
p

Z
R

e�ðx�yÞ2=4itwðyÞdy ¼ wðxÞ þOðw0
ffiffi
t
p
Þ; as t! 0þ;
then
kX t
0w� wkL2 6 C

ffiffi
t
p
kwkH1 ð22Þ
for some C > 0 (see also Lemma 2.2 by [7]). In order to estimate the second term we remark that
kX t
cwk

2
L2 ¼

Z
R

Z
R

Rt
cðx; yÞwðyÞdy

����
����
2

dx ¼
Z

Bt

Z
R

Rt
cðx; yÞwðyÞdy

����
����
2

dxþ
Z

BH

t

Z
R

Rt
cðx; yÞwðyÞdy

����
����
2

dx;
where
Bt ¼ fx 2 R : jxj 6 t2bg; b <
1

4
; and BH

t ¼ R� Bt:
We remark that
Z
Bt

Z
R

Rt
cðx; yÞwðyÞdy

����
����
2

dx 6 kwk2
L2

Z
Bt

Z
R

jRt
cðx; yÞj

2 dxdy 6 Ct2bkwk2
L2
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since
erfcðzÞ ¼ 1þOðzÞ as z! 0
and
erfcðzÞ � e�z2

z
ffiffiffi
p
p ½1þOðz�2Þ� as z!1; j arg zj 6 3

4
p: ð23Þ
In order to estimate the integral over BH

t we make use of (23) obtaining that
Z
BH

t

Z
R

Rt
cðx; yÞwðyÞdy

����
����
2

dx 6
t

4p

Z
R

dx
Z

R

wðyÞ
1þ jxj þ jyj e

�ið1þjxjþjyjÞ2=ð2tÞ dy

����
����
2

6 Ct3½kwk2
L2 þ kw0k2

L2 �
by integrating by parts. h

Remark 5. We have that
Y t : H 1 ! H 1 and kY twkH1 6 C½1þ kwk2l
L1�t�kwkH1 ð24Þ
for some constant C independent of w, � and t. This fact immediately follows from the definition of Y t. Fur-
thermore, we have also that (see [1])
St;X t : H 1 ! H 1:
2.3. Proof of Theorem 1

The proof of Theorem 1 is split in several Lemmas, and follows some ideas by [7] adapted to our model. In
the following let:
p ¼ 2l:
Lemma 2. Let w;w1;w2 2 L2 \ L1, let
M ¼ max½kw1kL1 ; kw2kL1�:

The evolution operator Y t satisfies to the Lipschitz condition
kY tw1 � Y tw2kL2 6 ½1þ pj�jtMp�1� � kw1 � w2kL2 : ð25Þ
Proof. Indeed,
Y tw1 � Y tw2 ¼ w1 exp½�i�tjw1jp� � w2 exp½�i�tjw2jp� ¼ ðw1 � w2Þ exp½�i�tjw1jp� þ w2½e�i�tjw1jp � e�i�tjw2jp �:

Hence
kY tw1 � Y tw2kL2 6 kw1 � w2kL2 þ kw2kL1k1� e�i�tðjw2jp�jw1jpÞkL2 ;
where
k1� e�i�tðjw2jp�jw1jpÞkL2 6 pj�tj � kw2 � w1kL2 Mp�1
since j1� eizj 6 jzj, for any z 2 R, and jyjp � jxjp 6 pjy � xjjyjp�1 for any p P 1 and for jxj 6 jyj. h

Lemma 3. Let w1;w2 2 L2 \ L1. The evolution operator Zt satisfies to the Lipschitz condition:
kZtw1 � Ztw2kL2 6 ½1þ pj�jtMp�1� � kw1 � w2kL2 ; M ¼ max½kw1kL1 ; kw2kL1�: ð26Þ
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Proof. Indeed, it directly comes from the previous estimate and from the fact that evolution operator X t is
linear and unitary:
kZtw1 � Ztw2kL2 ¼ kX t½Y tw1 � Y tw2�kL2 ¼ kY tw1 � Y tw2kL2 : �
Let us denote
F ðuÞ ¼ jujpu:
Lemma 4
kF ðuÞ � F ðvÞkL2 6 ðp þ 1ÞMpku� vkL2 ; M ¼ max½kukL1 ; kvkL1�:
Proof. A simple computation yields
kF ðuÞ � F ðvÞkL2 ¼ kujujp � vjvjpkL2 6 kukp
L1ku� vkL2 þ kvkL1kjuj

p � jvjpkL2

6 kukp
L1ku� vkL2 þ kvkL1ku� vkL2 ½p max½kukL1 ; kvkL1�

p�1� 6 Kku� vkL2 ;

K ¼ ðp þ 1ÞMp; M ¼ max½kukL1 ; kvkL1�: �
We compare now the mild representation of equations (1)
wt ¼ Stw0 ¼ X tw0 þ i�

Z t

0

X t�sjwsj
pws ds ¼ X tw0 þ i�

Z t

0

X t�sF ½Ssðw0Þ�ds
with the evolution Ztw0 ¼ X tY tw0, where
Y tw0 ¼ w0 þ i�

Z t

0

F ½Y sðw0Þ�ds:
Then
Stw0 � Ztw0 ¼ Stw0 � X tY tw0 ð27Þ

¼ X tw0 þ i�

Z t

0

X t�sF ½Ssðw0Þ�ds� X t½w0 þ i�

Z t

0

½Y sðw0Þ�ds�

¼ þi�

Z t

0

X t�sF ½Ssðw0Þ�ds�
Z t

0

X tF ½Y sðw0Þ�ds
� �

¼ þi�

Z t

0

X t�sfF ½Ssðw0Þ� � F ½Zsðw0Þ�gdsþRðt;w0Þ; ð28Þ
where Z Z� �

Rðt;w0Þ ¼ þi�

t

0

X t�sF ½Zsðw0Þ�ds�
t

0

X tF ½Y sðw0Þ�ds :
We are going now to estimate the remainder term R.

Lemma 5. Let 0 < b < 1
4, let t > 0 fixed, let u 2 H 2 \ L2 and let
K ¼ C max
s2½0;t�
½kX sY sðuÞkp

L1 ; kY sðuÞkp
L1�;
where C is a positive constant independent onu, but depending on b. We assume that t is such that tK 6 1. Then
kRðt; uÞkL2 6 j�jK2½t3=2kukH1 þ Cjcjtbþ1kukL2 �: ð29Þ
Proof. We set
Rðt; uÞ ¼ i�

Z t

0

X t�sR1ðs; uÞds;
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where
R1ðs; uÞ ¼ F ½Zs
1ðuÞ� � X sF ½Y sðuÞ� ¼ I þ II
with
I ¼ F ½X sY sðuÞ� � F ½Y sðuÞ� and II ¼ X sF ½Y sðuÞ� � F ½Y sðuÞ�:

Let
M ¼ max½kX sY sðuÞkp
L1 ; kY sðuÞkp

L1�:

From Lemmas 1 and 4 it follows that:
kIkL2 6 ðp þ 1ÞMkX sY sðuÞ � Y sðuÞkL2 6 K½
ffiffi
s
p
kY sðuÞkH1 þ jcjsbkY sðuÞkL2 �
and
kIIkL2 6 ½
ffiffi
s
p
kF ½Y sðuÞ�kH1 þ jcjsbkF ½Y sðuÞ�kL2 � 6 K½

ffiffi
s
p
kY sðuÞkH1 þ jcjsbkY sðuÞkL2 �
since kjujpukL2 6 kukp
L1kukL2 andkjujpukH1 6 Ckukp

L1kukH1 for some C > 0. From this fact and from Lemma 2
we can conclude that
kR1ðs; uÞkL2 6 K½
ffiffi
s
p
kY sðuÞkH1 þ jcjsbkY sðuÞkL2 � 6 KfC½1þ kukp

L1�s�
ffiffi
s
p
kukH1 þ KjcjsbkukL2g:
From this estimate then (29) immediately follows:
Now, from (28) and (29), it follows that:
kStðw0Þ � Ztðw0ÞkL2 6 j�j
Z t

0

kX t�sfF ½Ssðw0Þ� � F ½Zsðw0Þ�gkL2 dsþ kRðt;w0ÞkL2

6 j�jK
Z t

0

kSsðw0Þ � Zsðw0ÞkL2 dsþ j�jK2½t3=2kw0kH1 þ jcjtbþ1kw0kL2 �:
From this fact and from the Gronwall’s Lemma (see, e.g., Lemma 2.1 in [7]) then for any h > 0 fixed we have
the following uniform estimate:
kStðw0Þ � Ztðw0ÞkL2 6 ej�jKhj�jK2½t3=2kw0kH1 þ jcjtbþ1kw0kL2 �; 8t 2 ½0; h�: ð30Þ

In particular, for t ¼ h, it takes the form
kShðw0Þ � Zhðw0ÞkL2 6 ej�jKhj�jK2½h3=2kw0kH1 þ jcjhbþ1kw0kL2 �: ð31Þ

Now, let h > 0 and N 2 N fixed, let T ¼ Nh and m and m1 defined, respectively, by (14) and (15). The tri-

angle inequality yields
kðZhÞN ðw0Þ � SNhðw0ÞkL2 ð32Þ

6

XN�1

j¼0

kðZhÞN�j�1ZhSjhðw0Þ � ðZhÞN�j�1Sðjþ1Þhðw0ÞkL2

6

XN�1

j¼0

ð1þ j�jphmp�1ÞN�j�1k½Zh � Sh�Sjhðw0ÞkL2

6

XN�1

j¼0

ð1þ j�jphmp�1ÞN�j�1ej�jCmphj�jCm2p½h3=2kSjhw0kH1 þ jcjhbþ1kSjhw0kL2 �

6

XN�1

j¼0

ð1þ j�jphmp�1Þj
" #

� ej�jCmphj�jCm2p½h3=2m1 þ jcjhbþ1kw0kL2 �

6
ð1þ j�jphmp�1ÞN � 1

j�jphmp�1
� ej�jCmphj�jCm2p½h3=2m1 þ jcjhbþ1kw0kL2 � ð33Þ

6 ½ej�jpmp�1T � 1� � ej�jCmphj�jCm2p½h1=2m1 þ jcjhbkw0kL2 � ð34Þ
and the proof is completed. h
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3. Numerical experiments

In this Section we implement the Lie approximation method in a Fortran program and then we perform
some experiments concerning the interaction of solitons with pointwise perturbation and blow-up
phenomenon.

3.1. The algorithm

Since we are able to give an explicit expression of the linear evolution operator X t ¼ e�iH ct by means of an
integral operator (18) which kernel Ut

c is explicitly written (Lemma 1) then the numerical procedure is quite
simple and it is not particularly computationally expensive. The only problem we have to face consists in the
fact that for small h this kernel becomes singular and we should take a larger grid. In order to avoid such a
computationally expensive procedure we make use of a simple trick, we shall compute X h for small h making
use of the group property
X h ¼ X�t0 X t0þh;
where t0 is fixed and much larger than h (for instance t0 ¼ 1) and where X�t0 and X t0þh are computed numer-
ically with a grid of just 8000 points. This trick, which consists in using one step backward and one (a little bit
larger) step forward operator, has been also numerically validated comparing different simulations with small
time step h on a very thin grid, with time steps t0 þ h and �t0 on the same thin grid and, finally, with time steps
t0 þ h and �t0 on the relatively coarse grid; the results obtained fully agree.

The evolution operator X t is an unitary operator and thus the norm of the vector X tw coincides with the
norm of the vector w. However, the numerical evaluation of the action of the integral operator X t is not
exactly unitary because of the occurrence of numerical errors. We compensate these small errors by re-normal-
izing the vector X tw at each step. We could minimize these errors with, for instance, other procedures as
increasing the size of the grid or making use of some adaptive scheme. As it appears in some numerical tests
we did not see here any particular advantage in making use of these more computationally expensive proce-
dures, then we adopt the faster re-normalization procedure.

Then, we compute N-times
Zh ¼ N Y hX�t0 X t0þh for h� 1 and t0 ¼ 1;
where N normalizes the final output to the norm of the initial data.
This procedure is implemented by means of a simple Fortran program which:

– reads the parameters h, N, �, c, l, the dimension ðxmin; xmaxÞ and the number of points Lþ 1 of the spatial
grid;

– reads the initial data in a vector
y0 ¼ fðx0
j ; y

0
j ¼ w0ðx0

j ÞÞ; j ¼ 1; 2; . . . ;Mg
of M elements;
– by means of a linear interpolation method the program adapts the initial data to the given grid of Lþ 1

elements
y0 ! y ¼ fðxj; yjÞ; j ¼ 0; 1; . . . ; Lg;
where x0 ¼ xmin, xL ¼ xmax and xj � xj�1 ¼ 1
L ðxmax � xminÞ;

– compute the norm
c ¼ xmax � xmin

L

XL

j¼1

jyj�1j
2 þ jyjj

2

2

" #1=2

;

of the initial wave function;
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– iterates N time the following cycle:
+ compute y ! y1 ¼ X 1þhy;
+ compute y1 ! y2 ¼ X�1y1;
+ compute y2 ! y3 ¼ Y hy2;
+ compute the norm ~c of y3 and define
y3 ! y ¼ N y3 ¼ fðxj; yjÞ; j ¼ 0; 1; . . . ; Lg;
where yj ¼ c
~c y3

j ;
+ write the output y of the cycle on a file.

3.2. Motion of solitons

A soliton is a solution of the free NLS which uniformly moves maintaining its initial shape. Here, we con-
sider the effect of the singular perturbation on such a motion.

3.2.1. Splitting of a single soliton.
Let us a consider a single soliton-like wave function solution of the form
wtðxÞ ¼
ffiffiffiffiffi
2

j�j

s
1

coshðxþ 2v1t � x1Þ
e�ið�tþv1xþv2

1
tÞ;
where v1 and x1 are fixed real valued parameters. This function is the exact solution of the free Eq. (2) with
V 	 0 with self-focusing cubic nonlinearity, that is l ¼ 1 and � < 0 [1]; corresponding to the initial wave
function
w0ðxÞ ¼
ffiffiffiffiffi
2

j�j

s
1

coshðx� x1Þ
e�iv1x: ð35Þ
As it is well known, such a wave function uniformly moves with ‘‘velocity’’ v1 maintaining its initial shape.
If we introduce the singular potential then we see that the solution wt of Eq. (1) with initial condition (35)

splits in two different parts with soliton-like shape when the center of mass of the wave function defined as
hxit ¼
Z

R

xjwtðxÞj
2 dx ð36Þ
hits the support of the Dirac’s delta potential. One part of the solution still moves according to the initial
velocity while the other part moves in the opposite direction; see, e.g., Fig. 1 where the wave function wt hits
a barrier given by means of a repulsive Dirac’s delta with positive strength, that is c > 0.

In fact, when the Dirac’s delta perturbation is of attractive type, i.e. c < 0, then a new term with cusp shape
centered around the support of the singular perturbation appears (see Fig. 2). This term is the contribution
due to the stationary solution uðxÞ of NLS of the form
uðxÞ ¼ A sech½kðjxj � x0Þ�

for some values of A, k and x0. Indeed, Eq. (1) admits real-valued stationary solutions when the strength c
of the Dirac’s delta potential is smaller than a critical value ccðlÞ which depends on the nonlinearity power
l (see [20] for the cubic NLS, see also [10] for NLS with any power l). In particular, for the numerical exper-
iment discussed in Fig. 2 where l ¼ 1, � ¼ �1 and c ¼ �3 then c < cc since for l ¼ 1 the critical value cc is
given by
ccð1Þ ¼
1
4

when � ¼ �1;

� 1
2

when � ¼ þ1:

(

Finally, in Fig. 3 we compare the motion of the center of mass of the wave function for different cases and
we can see that the effect of the singular perturbation on such a motion consists of a decreasing of the
velocity.
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Fig. 1. Here we plot the graphics of the absolute value of the solution wtðxÞ of Eq. (1) for different values of t. Initially we have a soliton-
like function (35) moving forward, i.e. v1 > 0. When the center of mass of the wave function hits the barrier (broken line) given by means
of a repulsive, that is c > 0, Dirac’s delta supported at x ¼ 0 then the soliton splits in two parts with a soliton-like shape. One part of the
wave function still moves forward with the same velocity while the other part moves backward. Here we choose the following values of the
parameters: l ¼ 1, � ¼ �1, x1 ¼ �10, v1 ¼ 3 and c ¼ 3. The spatial grid consists of L ¼ 8000 points, furthermore N ¼ 300 and h ¼ 0:01.

0 –10 –5 0 5 10 x

|ψ|

Fig. 2. Here we plot the graphics of the absolute value of the solutions wtðxÞ of Eq. (1) at t ¼ 3:0 with initial condition (35) and with the
choice of the parameters as in Fig. 1. Broken line represents the case of a repulsive Dirac’s delta with c ¼ 3. Full line represents the case of
an attractive Dirac’s delta with c ¼ �3; in this case a cusp corresponding to a stationary state centered around the support of the singular
perturbation appears.
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Our results agree with the one obtained by [14–16]. We should emphasize that in [15] a two-dimensional
ðx; tÞ grid of size 15000
 20000 has been chosen. Here, by taking advantage from the fact that the kernel
of the integral operator is explicitly known, we only require of a spatial grid of 8000 points.
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Fig. 3. For a free problem (dot line) the center of mass defined as (36) uniformly moves forward. The effect of a Dirac’s delta at x ¼ 0
produces the splitting of the wave function as seen in Figs. 1 and 2 and the velocity of the motion of the center of mass decreases. In the
case of an attractive Dirac’s delta the appearance of a stationary term produces a stronger decreasing effect of the velocity of the center of
mass.
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3.2.2. Collision of two solitons

We consider here the motion of a 2-soliton-like wave function wtðxÞ for an attractive cubic NLS (i.e. � > 0
and p ¼ 2) with initial wave function of the form
w0ðxÞ ¼
ffiffiffi
2

�

r
1

coshðx� x1Þ
e�iv1x þ

ffiffiffi
2

�

r
1

coshðx� x2Þ
e�iv2x
for some values of the real parameters x1;2 and v1;2. The two soliton-like terms move according to their velocity
maintaining their initial shape till their supports remain disjoint. We consider now a numerical experiment
where the two solitons move in opposite direction with different velocities and the collision point coincides
with the support of the singular perturbation, that is x1 ¼ �9, v1 ¼ 3, x2 ¼ 6 and v2 ¼ �2.

In the case of the free problem, where V 	 0, then the two solitons cross at x ¼ 0 and then still continue to
move maintaining their velocities. In particular, the center of mass uniformly moves forward. In the presence
of the Dirac’s delta perturbation we observe a different picture: after the collision at x ¼ 0 we observe four
soliton-like different wave functions moving with different velocities. The global effect of such a motion is
described by means of the motion of the center of mass. In particular, we can observe different behaviors
of this motion for different type of singular perturbation. That is, in the case of an attractive Dirac’s delta
the center of mass is accelerated when it passes through the support of the Dirac’s delta; while, in the case
of a repulsive Dirac’s delta then the center of mass is decelerated and, furthermore, it inverts its motion mov-
ing finally backwards (see Fig. 4).

3.3. Blow-up

The phenomenon of blow-up has been investigated extensively in the case of the free nonlinear Schrödinger
equation (see, e.g., [5]) and recently new results have been obtained for NLS with Dirac’s delta interaction [2].
In such a problem the definition of blow-up is the same as in the standard case: that is, let wt 2 H 1ðRÞ be the
unique maximal solution of the Cauchy problem (1) with initial data w0 2 H 1ðRÞ. We call wt a blow-up solution

and say that wt blows up forward in finite time if there exists a finite Tþ such that
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Fig. 4. We consider the case of the collision at x ¼ 0, where the singular perturbation is supported, of oppositely moving soliton-like wave
functions with different velocities. We plot the center of mass hxit in the cases of attractive Dirac’s delta corresponding to c ¼ �3 (broken
line), repulsive Dirac’s delta corresponding to c ¼ 3 (dot line) and free potential corresponding to c ¼ 0 (full line). In the last case the
center of mass moves uniformly forward. In the first two cases the final effect of the singular perturbation consists of an acceleration or
deceleration of the center of mass when it hits the support of the singular perturbation; in particular in the case of an attracting singular
perturbation the motion inverts its direction.

1496 A. Sacchetti / Journal of Computational Physics 227 (2007) 1483–1499
lim
t!Tþ�0

kwtkH1 ¼ þ1:
As in the standard case, we have a blow-up alternative; namely, either the solution is global in time, or it blows
up in finite time.

Usually, existence of global solution when � < 0 is proved by means of some a priori estimates on the norm
of the gradient of wt based on the energy conservation and on the Gagliardo–Niremberg inequality (see
Appendix in [2]). In particular we have that
E½wt� ¼ kw0tk
2
L2 þ cjwtð0Þj

2 þ �

lþ 1
kwtk

2ðlþ1Þ
L2ðlþ1Þ P kw0tk

2
L2 � jcj � kw0tkL2 þ

�

lþ 1
kwtk

2ðlþ1Þ
L2ðlþ1Þ

P kw0tk
2
L2 � jcj � kw0tkL2 þ

4

p2

�

lþ 1
kw0tk

l
L2 :
That is the quantity z ¼ kw0tkL2 has to satisfy the following inequality:
E½w0�P z2 � jcjzþ 4

p2

�

lþ 1
zl: ð37Þ
Let us denote by S the set of solutions of such inequality; if there exists a positive constant c such that c 62 S
and kw00kL2 6 c then kw0tkL2 6 c and the solution wt exists globally in time.

On the other hand, the existence of blow-up is usually proved making use of the Virial method (also named
Glassey’s method [13]), based on the computation of the moment of inertia of the solution. To this end, let us
define the set
K ¼ H 1ðRÞ \ fw 2 L2ðRÞ : xw 2 L2ðRÞg \ fw 2 L2ðRÞ : kwkL2 ¼ 1g;

and let the initial data belonging to this set, that is w0 2 K. Then (see Theorem 2 in [2]) the solution wt of NLS
(1) belongs to K for any t 2 ðT�; TþÞ and furthermore the variance IðtÞ (also called moment of inertia) of the
solution wt, defined as follows:
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I ¼ IðtÞ ¼
Z

R

x2jwtðxÞj
2 dx; t 2 ð�T�; TþÞ
is such that I 2 C2ð�T�; TþÞ and
€I ¼ 8E½wt� þ 4�
l� 2

lþ 1
kwtk

2ðlþ1Þ
L2ðlþ1ÞðRÞ � 4cjwtð0Þj

2
: ð38Þ
The method of Glassey consists in proving an a priori estimate of the type €I 6 �C, for some C > 0 indepen-
dent of t, from which follows that IðtHÞ ¼ 0 for some tH > 0; in such a case then blow-up will occur for some
Tþ 6 tH.

Now, we carry out the analysis of the blow-up for the NLS equation with singular potential (see Theorem 3
and its proof in [2]).

There is no blow-up and the solution wt of Eq. (1) with initial data w0 2 K exists globally in time if one of
the following conditions is fulfilled:

(i) � P 0;
(ii) � < 0 and l < 2;

(iii) 0 > � > � 3p2

4
and l ¼ 2;

(iv) 0 > � > ��1, for some �1 > 0 depending on w0, and l > 2.
In contrast, the solution wt of Eq. (1) with initial data w0 2 K blows up in finite time if

(v) l > 2 and the energy (13) is such that
E½w0� <
0 if c > 0;

� c2ðl�1Þ2
4lðl�2Þ if c < 0:

(
ð39Þ
3.3.1. Blow-up analysis for a stationary state of the linear problem

Here we investigate in more detail the blow-up phenomenon when � < 0 and the initial data w0 coincides
with the ground state (17) for the Hamiltonian H c, where c < 0. For the sake of definiteness we assume c ¼ �1
and l ¼ 3. In such a case an explicit computation gives
E½w� ¼ E½w0� ¼ E½/c� ¼ �
1

4
c2 þ � jcjl

2lðlþ 1Þ2
< 0:
In order to see when there is no blow-up then we have to consider inequality (37) which takes the form
� 1

4
c2 þ � jcjl

2lðlþ 1Þ2
P z2 � jcjzþ 4

p2

�

lþ 1
zl;
where z ¼ kw0tkL2 and where kw00kL2 ¼ 1
2

for c ¼ �1. Such an inequality has, for l ¼ 3 and c ¼ �1, the form
gðzÞ :¼ � �

p2
z3 � z2 þ z� 1

4
þ � 1

128
P 0;
where the function gðzÞ is such that
gð0Þ < 0; gðkw00kL2Þ > 0 and lim
z!þ1

gðzÞ ¼ þ1:
In particular, when j�j < 1
3
p2 this function has a minimum at
xmin ¼
2p2

6j�j 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3j�j

p2

r" #
> kw00kL2 ¼

1

2

given by
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Fig. 5. Logarithmic plot of kw0tkL2 for different values of the nonlinearity parameter � < 0. For j�j ¼ 2; 3; 5 we do not see blow-up (as
predicted when j�j < �1 � 2:998). In contrast, for j�j ¼ 10; 15; 20 the picture suggests the occurrence of blow-up (as predicted when
j�j > �2 � 10:67).
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gðxminÞ ¼ �
½256p4 þ 256p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 3j�j

p
� 768pj�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 3j�j

p
� 1152j�jp2 þ 864j�j2 þ 27j�j3�

3456j�j2
;

where gðxminÞ < 0 for any j�j < �1 � 2:998. Therefore, in the case l ¼ 3 and c ¼ �1 then we can conclude that
the solution wt with initial data w0 ¼ /c there exists globally in time for any � < �1.

In order to see when there exists blow-up then we make use of inequality (39), which implies that if the
parameters l > 1 and � < 0 satisfy the following condition:
j�jjcjl�2
> f ðlÞ :¼ 2lðlþ 1Þ2 ðl� 1Þ2

4lðl� 2Þ �
1

4

" #
;

then the solution wt blows up in finite time. In particular, for l ¼ 3 and c ¼ �1 then the linear stationary state
/ðxÞ ¼ 1ffiffi

2
p e�

1
2jxj will blow-up in finite time for any � < ��2 where �2 ¼ f ð3Þ ¼ 1

3
32 � 10:67. Therefore, we can

conclude that our theoretical analysis will predict the following picture:
l ¼ 3; c ¼ �1 and w0 ¼ /c then
j�j < �1 � 2:998 no-blow-up;

j�j > �2 � 10:67 blow-up:

�

In the range j�j 2 ½�1; �2� the theoretical analysis does not work. A numerical experiment is described in Fig. 5
where we observe a transition from the no-blow-up regime, where 0 > � > ��1, to the blow-up regime where
� < ��2.
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